Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

ВМ 2 семестр / Лекции / Лекция 4

.pdf
Скачиваний:
0
Добавлен:
16.05.2024
Размер:
456.92 Кб
Скачать

1

Лекция 4. Несобственные интегралы. Несобственные интегралы с бесконечными пределами. Несобственные интегралы от неограниченных функций. Главные значения несобственных интегралов. Признаки сравнения несобственных интегралов. Признак абсолютной сходимости. Некоторые известные несобственные интегралы. Свойства гамма-функции.

Лекция 4

Несобственные интегралы

1. Несобственные интегралы с бесконечными пределами

Рассмотрим функцию f x , определенную на полуинтервале a, .

 

 

 

 

 

b

 

 

 

 

 

 

 

 

Пусть на любом отрезке

 

a,b

 

существует определенный интеграл

 

f

 

x dx

(функция f x интегрируема на отрезке a,b ).

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Определение 1.

Несобственным интегралом

 

 

f

 

x dx

 

 

называется предел

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

следующего вида

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f

 

 

x dx lim

f

 

 

 

x dx .

 

 

 

 

 

(1)

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Определение 2.

Несобственный интеграл

 

 

 

 

f

 

x dx

называется сходящимся,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

если

 

f

 

x dx

lim

 

f

 

x dx

const . Если же данный предел не существует

 

 

 

a

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

или

является

 

бесконечным,

 

то

 

говорят,

 

 

что

 

несобственный интеграл

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f

 

x dx расходится, а функция f

 

x

 

не интегрируема.

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Геометрический смысл несобственного интеграла

 

f

 

x dx заключается

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

в

 

следующем.

 

Пусть

функция

 

f x непрерывна

и

 

неотрицательна на

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

полуинтервале

 

a,

 

,

тогда

 

 

интеграл

 

f

 

 

x dx

 

дает

 

площадь бесконечно

a

длинной криволинейной трапеции см. рис.1.

Стаценко И.В. Лекция 4. Несобственные интегралы.

2

y

f x

x

a

Рис.1.

По аналогии с видом (1) можно ввести еще два вида интегралов с бесконечными пределами:

 

 

b

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

f

 

x dx lim

f

 

x dx ,

 

 

 

(2)

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

f

 

x dx lim

f

 

x dx .

 

 

 

(3)

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

b a

 

 

 

 

 

 

 

В случае (2)

функция

определена

на

полуинтервале

,b и существует

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

определенный

интеграл

 

f

 

x dx

на

любом

отрезке

 

a,b

 

внутри данного

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

полуинтервала.

В случае (3) функция определена на всей числовой оси Ox и

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

существует определенный интеграл

 

f

 

x dx на любом отрезке

 

a,b

 

числовой

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

оси Ox .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Пример 1. Вычислить интеграл e x dx .

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

b

dx

 

 

 

1

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

Решение:

e

 

dx lim

 

 

lim

 

 

 

 

1.

 

 

 

 

 

 

x

 

x

 

 

 

 

 

0

 

b 0

e

 

 

 

b e

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Интеграл e x dx сходится.

0

Стаценко И.В. Лекция 4. Несобственные интегралы.

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Пример 2.

Вычислить интеграл

x 1dx .

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

b

 

 

 

 

 

 

 

b .

Решение:

 

x 1dx lim

 

x 1dx lim

 

ln

 

x

 

 

 

 

 

b

b

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

1

 

 

 

 

 

 

 

 

Интеграл x 1dx расходится.

1

2. Несобственные интегралы от неограниченных функций

Рассмотрим функцию

f x

, определенную на полуинтервале

a,b ,

неограниченную слева от точки b .

Пусть на любом отрезке a,b ,

0

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

существует определенный интеграл

 

f

 

x dx (функция f

 

x

 

интегрируема).

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Определение 3.

Несобственным

интегралом

 

f

 

x dx

от

 

функции

f

 

x

 

,

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

неограниченной слева от точки b , называется предел следующего вида

 

 

 

 

 

 

b

 

 

 

0

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f

 

x dx lim

 

 

f

 

x dx .

 

 

 

 

 

 

 

 

(4)

 

a

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Определение 4.

Несобственный

интеграл

 

f

 

x dx

от

 

функции

f

 

x

 

,

a

неограниченной слева от точки b , называется сходящимся, если выполняется

 

 

 

 

b

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

условие:

 

f

 

x dx const . Если

 

f

 

x dx или не существует, то интеграл

 

 

 

 

a

 

 

 

a

 

 

 

 

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f

 

x dx называется расходящимся.

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Геометрический смысл несобственного интеграла

 

f

 

x dx от функции

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

f x , неограниченной слева от точки

b , заключается в следующем.

Пусть

функция

f x непрерывна и неотрицательна на полуинтервале a,b ,

тогда

b

интеграл f x dx дает площадь бесконечно высокой криволинейной трапеции.

a

см. рис.2.

Стаценко И.В. Лекция 4. Несобственные интегралы.

4

y

f x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

a

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рис.2.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рассмотрим функцию

f x ,

определенную на полуинтервале

a,b ,

неограниченную справа от точки a .

Пусть на любом отрезке a ,b ,

0

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(функция f

x

 

 

 

 

 

 

существует определенный интеграл

 

f

 

x dx

 

 

 

интегрируема).

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Определение 5.

Несобственным

интегралом

 

 

f

 

x dx

от

 

функции

f

 

x

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

неограниченной справа от точки a , называется предел следующего вида

 

 

 

 

 

 

b

 

 

 

0

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f

 

x dx lim

 

 

f

 

x dx .

 

 

 

 

 

 

 

 

(5)

 

a

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Определение 6.

Несобственный

интеграл

 

 

f

 

x dx

от

функции

f

 

x

 

,

a

неограниченной справа от точки a , называется сходящимся, если выполняется

 

 

 

 

b

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

условие:

 

f

 

x dx const . Если

 

f

 

x dx или не существует, то интеграл

 

 

 

 

a

 

 

 

a

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f

 

x dx называется расходящимся.

 

 

a

Стаценко И.В. Лекция 4. Несобственные интегралы.

5

 

 

b

 

 

 

 

Геометрический смысл несобственного интеграла

 

f

 

x dx от функции

 

 

 

 

 

 

 

a

 

 

 

 

f x , неограниченной справа от точки a , заключается в следующем.

Пусть

функция f x

непрерывна и неотрицательна на полуинтервале a,b ,

тогда

 

b

 

 

 

 

 

 

интеграл

 

f

 

x dx дает площадь бесконечно высокой криволинейной трапеции.

 

a

 

 

 

см. рис.3.

 

 

 

 

y

f x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

a

 

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рис.3.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Пример 3.

Вычислить интеграл

 

 

 

dx .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

0

 

 

 

 

 

 

0

 

 

 

 

 

 

Решение:

 

 

 

x 1 dx lim

 

 

x 1 dt

lim

ln

x

 

 

1

.

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

1

dx расходится.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Интеграл

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f

x

 

Определение 7.

Несобственным

интегралом

 

f

 

x dx от функции

 

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

неограниченной

справа

от

точки

 

a

 

и

слева

от

точки

 

b ,

называется

предел

следующего вида

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

 

0, 0

b

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f

 

x dx

 

 

lim

 

 

f

 

x dx .

 

 

 

 

 

 

 

 

(6)

 

 

 

a

 

 

 

 

1

 

 

 

2

 

a 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Стаценко И.В. Лекция 4. Несобственные интегралы.

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

1

 

 

 

 

 

 

 

 

 

 

Пример 4.

Вычислить интеграл

 

 

 

 

 

dx .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 x

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

Решение:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

1

 

 

 

 

 

1 2

1

 

 

 

 

 

 

 

 

 

 

 

 

 

1 2

 

 

 

 

dx

lim

 

 

 

 

dx

 

 

 

lim

 

arcsin(x)

 

.

 

 

 

 

 

 

 

 

 

 

 

 

1 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

2

 

 

 

1 x

 

 

0, 0

1 x

 

 

 

0,

0

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

1

2

1 1

 

 

 

 

 

 

1

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.Главные значения несобственных интегралов

Вопределении несобственного интеграла с бесконечным нижним и верхним пределами интегрирования не учитывается, с какой скоростью стремятся к бесконечности по отдельности нижний и верхний предел:

 

 

 

 

b

 

 

 

 

 

 

a

 

 

 

f

 

 

x dx lim

f

 

x dx .

(7)

 

 

 

 

 

b a

 

 

 

 

Если несобственный интеграл с бесконечными пределами вводить

следующим образом:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

с

 

 

 

 

 

 

 

с

 

 

 

f

 

x dx lim

f

 

x dx ,

(8)

 

 

 

 

 

с

 

 

 

 

то говорят, что несобственный интеграл с бесконечными пределами вычисляется в смысле главного значения. В этом случае для непрерывной и четной функции f x получим

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f

 

x dx 2

 

f

 

x dx ,

(9)

 

 

 

 

 

 

0

 

 

 

 

а для нечетной непрерывной функции f

x получим

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f

 

x dx

0.

 

(10)

Важным условием справедливости формулы (9) является сходимость интеграла

f x dx . Для справедливости формулы (10) в смысле главного значения не

0

важно сходится интеграл f x dx или не сходится.

0

Пример 5. Установить сходимость интеграла dx .

1 x2

Стаценко И.В. Лекция 4. Несобственные интегралы.

7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение: подынтегральная функция четная и при этом интеграл

 

 

dx

 

 

 

 

 

 

 

2

1 x2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

сходится, также

как сходится

 

 

 

 

 

, поэтому

исходный

интеграл

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

1

x

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

сходится и равен:

dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 x2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xdx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Пример 6.

Установить сходимость интеграла

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 x

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xdx

 

Решение:

подынтегральная

функция

нечетная

 

и

интеграл

 

 

 

 

 

 

 

1

x

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

расходится,

но исходный интеграл сходится в смысле главного значения,

так

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

как для нечетной функции:

 

xdx

0 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 x2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Признаки сходимости несобственных интегралов

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1. Признак сравнения

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Пусть функции f x

и g x

непрерывны на полуинтервале a, и

удовлетворяют условию

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 f (x) g x ,

 

x a ,

 

 

 

 

 

 

 

 

 

 

 

 

 

(11)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

тогда, если

 

 

 

g

 

x dx сходится,

то

сходится

интеграл

 

 

f

 

x dx ;

если

же

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

интеграл

 

f

 

x dx расходится, то интеграл

 

g

 

x dx тоже расходится.

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Пример 7. Исследовать интеграл на сходимость

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

3

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Стаценко И.В. Лекция 4. Несобственные интегралы.

8

 

 

 

 

 

 

 

 

 

 

 

 

dx

 

1

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

1

 

Решение: Так как интеграл

 

 

 

 

 

 

 

 

 

сходится,

а для функций

 

 

 

,

 

 

 

 

 

 

x

3

 

 

2

 

 

x

3

x

3

3

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

dx

 

 

 

 

 

 

 

 

 

 

 

 

выполняется условие:

 

 

 

 

 

,

 

 

x 1, то

 

 

также сходится.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

3

x

3

3

 

 

x

3

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Замечание 1: для непрерывных функций

f x

 

 

и g x признак сравнения

будет также справедлив, если условие (11) будет выполняться

 

для

всех

x ,

начиная со значения x x0 , такого, что a x0 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2. Предельный признак сравнения

 

 

 

 

 

 

 

 

 

 

 

Пусть

функции

 

f x

 

и

g x

непрерывны и неотрицательны

на

полуинтервале

 

a, , причем

 

g x 0 на любом промежутке

a,b . Тогда,

если существует конечный предел следующего вида:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

lim

 

f x

0

,

 

 

 

 

 

 

 

 

 

 

 

 

(12)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x g x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

то интегралы

 

 

 

f

 

x dx

и

 

 

g

 

x dx

либо

одновременно

сходятся,

либо

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

одновременно расходятся.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Если 0, то можно только утверждать, что из сходимости

 

g

 

x dx следует

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

сходимость

 

f

 

x dx .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

Замечание 2: Аналогичные признаки сравнения можно сформулировать для несобственных интегралов от неограниченных функций.

 

 

 

 

 

 

 

dx

 

 

 

 

 

 

 

Пример 8. Исследовать интеграл на сходимость

 

.

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

3

x

2x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dx

 

1

 

 

 

 

1

 

 

 

1

Решение: Так как интеграл

 

 

 

сходится, а для функций

 

 

,

 

 

 

x

2

3

x

2

x

2

2x

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

выполняется условие:

Стаценко И.В. Лекция 4. Несобственные интегралы.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

lim

 

 

x

2

 

 

1

0,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x2 2x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dx

 

 

 

 

 

 

то из сходимости интеграла

 

 

 

 

 

следует сходимость интеграла

 

 

 

 

 

 

 

.

 

 

 

x2

 

 

 

x2

2x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Признак абсолютной сходимости

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Пусть

функция

f x

 

непрерывна

на

 

полуинтервале

 

a, . Если

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

интеграл

 

 

 

f

 

 

x

 

dx

сходится, то сходится и интеграл

 

f

 

 

x dx .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Доказательство: Для любого x справедливо

0 f x

 

f

x

 

 

2

 

 

f x

. По

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

условию

 

 

 

 

f x

dx

 

 

сходится,

следовательно,

сходится

 

 

 

и

 

 

 

интеграл

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f x

 

 

 

 

 

 

 

dx сходится,

2

f x

dx . По признаку сравнения имеем, что

f

x

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

так как 2

f

 

 

x

 

 

f

 

x

 

 

f

 

x

 

. Тогда сходится интеграл

 

 

 

f

 

 

x dx .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Определение

 

 

8.

 

 

Если

 

сходится

 

интеграл

 

 

f x

dx ,

 

 

то

 

 

 

интеграл

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f

x

 

 

 

 

 

 

 

 

 

 

 

 

f

 

x dx называется абсолютно сходящимся,

а функция

 

 

 

 

 

 

 

-

 

абсолютно

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

интегрируемой.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Определение 9.

Если сходится интеграл

 

 

f

 

x dx ,

а

интеграл

 

 

 

f

 

x

 

dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

расходится, то интеграл

 

f

 

x dx называется условно сходящимся.

 

 

 

 

 

 

 

 

 

 

 

a

Замечание 3. Аналогичный признак абсолютной сходимости можно сформулировать для несобственных интегралов от неограниченных функций.

Стаценко И.В. Лекция 4. Несобственные интегралы.

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sin(x)dx

Пример 9.

Исследовать на абсолютную сходимость интеграл

 

 

 

 

 

 

 

x

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sin(x)

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x 1,

,

0

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x2

 

 

x2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dx

1 сходится.

 

 

 

 

 

 

 

 

 

 

 

 

Известно,

 

что

интеграл

 

 

 

 

 

Тогда по

признаку

сравнения

 

x

2

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sin(x)

 

dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sin(x)dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x2

 

сходится,

следовательно,

интеграл

 

x2

абсолютно

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

сходится.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Замечание 4. Используя доказательство, аналогичное представленному в примере 8, можно показать, что интегралы вида:

sin( x)dx

 

cos( x)dx

 

, const , при

n 1 сходятся

 

 

 

;

 

 

 

;

x

n

x

n

1

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

абсолютно.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sin(x)dx

Пример 10.

Исследовать на абсолютную сходимость интеграл

 

 

 

x

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

Решение:

Признаки сравнения несобственных интегралов в данном случае применять

затруднительно, так как, допустим,

сравнение с

 

расходящимся

интегралом

dx

 

 

 

 

 

 

 

 

 

 

 

 

 

x

по предельному признаку

сравнения

 

для модуля

отношения

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sin x

 

 

 

 

 

 

 

 

 

подынтегральных функций дает lim

 

 

x

 

 

lim

 

sin x

 

 

 

 

 

 

 

 

 

.

 

 

 

x

 

 

 

 

 

 

x

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Поэтому применим к исследуемому интегралу интегрирование по частям:

sin(x)dx

 

1

 

1

 

 

cos x

 

 

cos(x)dx

 

 

 

 

 

 

 

 

u

 

;

du -

 

dx;

 

 

 

 

x

x2

 

 

 

 

x

 

x

 

x2

 

dv sin(x)dx; v

cos(x)

 

 

 

 

1

 

 

 

 

 

1

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Стаценко И.В. Лекция 4. Несобственные интегралы.

 

 

 

 

 

 

 

Соседние файлы в папке Лекции